interpretations of molecular forces if the field for a polar gas is replaced by an effective symmetrical field.
On the one hand, this is confirmed by our calculations for 7y(T) for water vapor, including those with the
molecular potentials of [6], which were derived from the p—V —T data (curve 7 of Fig. 1). The deviations
from (1) are up to 3-5%, and they increase toward high and low temperatures. On the other hand, these de-
viations are comparatively small, so one can say that one gets reasonably satisfactory results within the
framework of the Chapman— Enskog theory by using various types of experimental data with a reasonably
realistic potential,

NOTATION

T, temperature; 74(T), zero-density dynamic viscosity; Ter = 647.27°K; aj, interpolation parameters
for viscosity; T * =KkT/e, reduced temperature; Wj =1/ (Anoj)z, statisticil weight; Angj = 6770"70i’ absolute
error; 577 ., relative error; o, £/Kk, i, 8, @, parameters of potentifls; 9(2;2) (T*), reduced collision integral; bj,
pirameters of interpolation formula for collision integrals 0(2.2) (T*); r = r/o, reduced internuclear distance;
6" = p2/12(e/kYyap], reduced dipole moment; 'y* = 2a/0y; 2a, diameter of spherical core; & = 5*G(91, 9y, ®);
G0y, 8,, ®) = 2 cos b, cos 8, — sin 0, sinf, cos &, function incorporating the effects of dipole orientation; Tg‘ =
T/(g/k)y, reduced temperature; o * = a/03, reduced molecular polarizability.

LITERATURE CITED

J. O. Hirschfelder, C. F. Curtis and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley (1964).
A. A. Aleksandrov, A, I. Ivanov, and A. B. Matveev, Teploénergetika, No. 4, 59 (1975).

L. Monchick and E. A, Mason, J. Chem. Phys., 35, 1676 (1961).

A. Das Gupta and T. S. Storvick, J. Phys. Chem., 76, 1470 (1972).

Y. Singh and S. Singh, J. Phys., Atom. Molec. Phys., B 4, 776 (1971).

V. N. Zurbarev and N. L. Krupina, Teploénergetika, No. 8, 19 (1973).

S. Singh and Y. Singh, J. Phys., Atom. Molec. Phys., 85, 2039 (1972).

H. W. Wooley, J. Res. NBS, 72 A, 359 (1968).

W -3 O U WD
. o . .

ACCURACY OF A ONE-DIMENSIONAL APPROXIMATION
FOR DOUBLE RODS

i, E, Zino and Yu. A. Sokovishin UDC 536.,24.02

Limits of applicability of one-dimensional models in computing temperatures in two-layered
rods are established on the basis of comparing the one-dimensional approximation with the exact
- two~dimensional solution.

To solve heat-conduction problems in cylindrical armature elements of constant and variable cross
section, a one-dimensional approximation method is used. The one-dimensional approximation yields satis-
factory results for homogeneous rods with low values of the Biot criterion [1]. The limits of a possible appli-
cation of this method were established in [2] in an example of a solid homogeneous cylinder. Meanwhile,
strict criteria for double rods consisting of heterogeneous materials are completely absent.

In order to establish admissible quantitative limits for the applicability of the one-dimensional approxi-
mation method for double rods, let us consider a cylinder consisting of heterogeneous materials with the co-
efficients of thermal conductivity A; and A,, The cylinder is heated at the base and exchanges heat with the
surrounding medium of temperature Ty, via the side surface because of convection and radiation with a total
constant coefficient of heat emission . The end-face surface is considered heat-insulated, which is the

M. I. Kalinin Leningrad Polytechnic Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol.
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TABLE 1. Roots un and Values p;* for Several Values of
the Biot Criterion for kg = 0.5

ky=0,1 Ry, = 1,0 k), = 10,0
Bi= 0,01 0,16051 0,14124 0,07824
4,62023 3,83432 2,95932
6,52822 7,01701 7,52153
10, 86038 10,17445 9,47851
12,77635 13,32444 13,87785
17,13139 16,47124 15,80746
19,04629 19,61637 20,18906
pf=0,16083 p¥=0,14142 p¥=0,07845
Bi = 0,05 0,35769 0,31426 0,17313
4,62253 3,84473 2,98448
6,53856 7,02271 7,52304
10,86142 10,17838 9,48581
12,78169 13,32744 13,87868
17,13206 16,47366 15,81180
19,04988 19,61841 20,18963
p¥=0,35921 pi=0,31623 pf=0,17540
Bi=0,1 0,50371 0,44168 0,24172
4,62537 3,85771 3,01553
6,55146 7,02982 7,52493
10,86272 10,18329 9,49493
12,78836 13,33120 13,87971
17,13289 16,47670 15,81724
19, 05436 19,62096 20, 19034
pf =0,50799 pf=0,44721 pF=0,24807

characteristic mode of operation of a different kind of edge in the armature. The stationary dimensionless

temperature u'will be determined by the Laplace equation

and the boundary conditions

Au;(r, 2)=0

(=1, 2

ui(rt O) = 1! uiz(rv l) :0 (l: 1: 2)) L{2-r(a, 2) + }ii uz(av Z) = 0.
03
The merger conditions are assured by equality of the temperatures and heat fluxes on the boundary of the
inner and outer cylinders

ul (rl: Z) = uz (rl’ 2)‘ ?‘lulr (rlv Z) = ;\'zuzr (rl’ Z)'

The problem (1)-(3) mentioned can be solved by separation of variables

hod —Z

ch Mn _l_‘___

Ll(f, Z)z An Rn\{r)v

chp, -
n=1 a

where up are the roots of the characteristic equation

b Teady (k) Yo (ko) — Jo (B Yy B T (0) — Jo ko) | Ty (ko) (e — 1) Vo ()
Bi  [kaJy (kW) Yo (lght) — Jo (k) Yy (R 1 () — T, (R,1) Jote iy o — DY ()

JO(“‘nr/a)y 0<r<f1,

R, ()= ,
D20 ) Loltar®) =0 yria)

JO (kap"n) - mnYO (kap‘n)
(Dn = [BI JO (p’n) - p‘n‘ll (I‘Ln)]/[BI YO (Hn) - ”‘nyl (Mn)]

, I<<r<<a,

@

@)

@)

(5)

Using the usual method, it can be shown that the eigenfunctions of the problem Rn(r) are orthogonal in the in-

terval [0, a] with the weight

Rir, 0<<r<<ry

q(r):{ r r<r<a’
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-and the heat amplitudes Ap are given by the expression
P ‘ 2 BiR, {a)/n?
"R (o — DT (Bglte) — had (k)] + (1 + Bi¥/p ) Rz ()

7

To determine the temperatures by means of 4)-(7) it is necessary to know the roots un of the transcen-
dental equation (5). Numerical values of the roots un are presented in the table for three characteristic
values of k) computed on an "M-220" type electronic computer. Some values of the heat amplitudes and of
the quantities wp are presented in {3].

In the one-dimensional case, the problem of heat transfer in a double rod in the case when the thermo-
physical characteristics are given functions of the temperature reduce to the solution of the nonlinear differ-
ential equation [1,4]

Tm \4]’ ®)

d dT ' T 4
a4z I:(klf1+7"2fz) 'Tz‘]zax2(T~Tm)‘r‘08X2 [(W) *(W)

where f; and f, are the respective cross-sectional areas for the inner and outer cylihders, and x, is the outer
perimeter of the cross section, For a step double rod, (8) retains its form for each step, and the conditions
of equality of the temperatures and heat fluxes in the plane separating the steps are added in the case of an
ideal thermal contact. Inthe case of a double circular rod, i.e., for f; = rrf, f, = v(a® — r}), x, = 27a, the
one-dimensional temperature distribution under appropriate simplifying assumptions relative to the thermo-
physical characteristics and the radiation heat exchange will satisfy (8), which is rewritten as

A ne 2 Bi

— =0 9
dz? [1 4 kZ (ks — 1)]a° “one ®

with boundary conditions of the form (2).

For long rods of modern structural materials with heat exchange through the side surface because of
free convection and radiation, the criterion is Bi <« 1. Using the relations for Bessel functions of the first
and second kinds with small values of the arguments [5], the value of the first root of the characteristic
equation (5) ui* can be obtained taking account of the smallness of the criterion Bi:

wE = 2 Bi/[l + k2 (b, — 1)]. (10)

Several values of the roots ui*, computed by means of (1) for characteristic values of k) and Bj for k, = 0.5,
are represented in Table 1. The values of u;* hence turn out to be close to the exact values of the first root
of the characteristic equation (5), which permits successful utilization of (10), Knowledge of the first root of
an equation of the type (5) turns out to be especially important in the case of the appropriate nonstationary
problem, since this root governs the temperature change of the rod in the regular thermal mode.

In the case of smallBi Ay —~ 1, Apn—~0@=2, 3, ...)and Ry(r) — 1 so that the solution of the two-di-
mensional problem (4) acquires for.small Bi the form

u(r, ) =chp -2z /chuje ! , (11)
a a

which is exactly the solution given by the one-dimensional approximation (9) with conditions of the type (2).
Therefore, it becomes evident that the one-dimensional solution results explicitly from the solution of the
two~dimensional problem for a double rod with small values of the Biot criterion,

By using the data in the table, the influence of the radius on the temperature distribution for small Bi
can be established, the temperatures obtained by using the one~dimensional approximation {11) and in the so-
lution of the appropriate two-dimensional problem (4) can be compared, and strict quantitative limits for the
applicability of the one-dimensional approximation method can also be set up. The comparison is carried out
for the surface temperature u (e, z) and the temperature u(0, z) on the axis of the double cylinder. Graphs of
the dependences u|p. 4 — Uone and Ugne — Ulp—o are represented in the Fig. 1 for three characteristic values
of kx and Bi = 0.05. An analysis of these dependences shows that the absolute error of the one-dimensional
approximation does not exceed 0.023(T ; — Tyy) for the most unfavorable case in ka kx =10,0). The absolute
error of the one-dimensional approximation gradually increases with the increase in the number Bi and reaches
the quantity 0.078(T, — Tm) for Bi = 0.2 and kj =10.0. The values of the relative errors are hence 2.9 and
17.5%, respectively.
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Fig. 1. Comparison between the one-dimensional approximation
and the exact two-dimensional solution for three characteristic
values ofkj : a)kj =0.1;b) 1.0; ¢) 10.0 for k4=0.5 and Bi=0.05.

An important characteristic for many applied problems is the ratio between the temperature of the double
rod and the temperature of a homogeneous rod at corresponding sections. This characteristic is called the
temperature efficiency [6]. The tabular data permit determination of the temperature efficiency of the double
rods under consideration. Thus, the temperature efficiency increases from 0.84 to 1.15 for Bi = 0.05 and ki
varying between 0.1 and 10.0,

Computations for double rods in the presence of a contact resistance between the inner and outer cylin-
ders indicate the lack of its influence of the temperature distribution for small Bi,

It must be noted that the greatest deviations from the one-dimensional solution are observed near the _
base, especially in the case of long cylinders ({/a =5.0and I/a = 10.0), which permits representation of the
temperature field structure in a first approximation as a quasi-one-dimensional solution with a boundary-layer
correction (in the Vishik — Lyusternik sense) at this base [3]. This permits taking account of the dependence
of the temperature on the transverse coordinate and a substantial diminution in the error of the one-dimen-
sional model.

Meanwhile, the mentioned quasi-one-dimensional formulas with a small correction along the radius can
also be obtained without turning to the exact solution (@) by direct asymptotic integration of the initial multi-
dimensional problem, by using singular perturbation methods [7], for example.

NOTATION

T, absolute temperature; z, coordinate along the rod length; r, radial coordinate; I, linear dimension;
a, coefficient of heat emission; €, emissivity; o, Stefan— Boltzmann constant; T, = const, temperature of
the lower base; u = (T — Tm)/(Ty— Tm), dimensionless temperature; u*, approximate value of the root s
Jox), Jj ), Yyx), Y;(x), Bessel functions of the first and second kinds; Bi = aa/hy, Biot criterion; ka = Ay/
Ay, kg =ry/a, dimensionless coefficients. Indices: m, surrounding medium; 1, inner cylinder; 2, outer
cylinder; n, appropriate member of the series.
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TEMPERATURE CONDITIONS OF ROCK EXCAVATION

B. A. Krasovitskii and F. S. Popov UDC 622.536,24:536.244

Heat exchange is considered between ventilating air and mining rocks in the case of variable air
temperature at the rock excavation entrance. Formulas are given for the temperature of the
ventilating air according to the extent of exploitation.

In developing deep pits with seams of high temperature as well as in many pits in the Far North that
have seams of low temperature the need arises for regulating the temperature of the ventilating air. The
problem thus arises of determining the temperature of the ventilating air along the length of the underground
excavation at different time instants. An exact solution of this problem which can be obtained by using the
operational calculus is very cumbersome. Several hours of machine time are needed to set it on an M-220
electronic computer. Numerous approximation methods have been proposed to find the solution, It was pro-
posed in [1] that the nonstationary heat exchange be taken into account between the air and the mined rocks
with the aid of a coefficient of nonstationary heat exchange; to determine the latter a dependence was assumed
which was an approximation to the exact solution, In [2] the formula for the nonstationary exchange coefficient
was obtained by approximating the solution of the problem under consideration on a hydrointegrator. Inthe
present article the integral method [3] is used to solve the heat-exchange problem between the ventilating air
and the mined rocks which, as shown below, produces a good agreement with the exact solution. The solution
is obtained for the case of variable air temperature at the mining operation entrance.

The equation of the heat flow of the ventilating air at the production face is given by

oT 2 , 00| q
A Y T
T,y = To®). 2)

In the above, q denotes the power of the internal heat sources per one meter of output face. Here heat emis-
sion due to moisture condensation or to various operating devices, etc., can also be included.

The heat-conduction equation for the rock mass surrounding the face is

30 1 o0 . o
% _ (L. , @)
a ¢ (g & o )
el’t= =BM’
) 1 8, \~
9 = (= e B 8. —T). “)
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